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1. Introduction

2. Methodology 3. Evaluation

LDM3D is integrated into DepthFusion:

1. Image-to-image inference with LDM3D: 
an RGBD input consisting of a 
panoramic image and depth map is 
passed through LDM3D to generate a 
new transformed image and depth map, 
guided by a given text prompt.

2. Generated images are projected onto a 
sphere and manipulated based on 
diffused depth, followed by meshing.

3. Different viewpoints are assembled.

LDM3D
ZoeD-NKDPT-LDepthRGBSD v1.4
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Image Analysis Metrics
CLIP↑IS↑FID↓Method

26.13 ± 2.8134.17 ± 0.7628.08SD v1.4
26.13 ± 2.7934.02 ± 0.7927.39SD v1.5
26.61 ± 2.92 28.79 ± 0.4927.82LDM3D (ours)

LDM3D 24b color image

LDM3D 16b depth map Mesh Refinement
Depth Map to 

Vertex Manipulation
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Meshing
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Viewpoint shows depth proximity.

Video Assembly

Frame assembly into movie file output.

4. Application: DepthFusion
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RMSE deviation of LDM3D w.r.t. DPT-L across 30k samples  

For ~50% of test samples, LDM3D achieves 
depth error within ±20% of DPT-Large.

We evaluate text-conditional image synthesis on 30k samples of the MS-COCO validation dataset.

Our model is on par with Stable Diffusion with nearly the same number of parameters (1.06B). We finetune on a 
subset of ~10k samples from LAION-400M. Depth labels for supervised training are produced using DPT-Large.

Depth Error Metrics 
(using depth maps from ZoeDepth-NK as reference/GT)

valid depth 
defined above 0m, 

with unbounded 
maximum

RMSEAbsRelMethod
1.57 [m]0.098DPT-Large
1.51 [m]0.109LDM3D (ours)

• 6-channel RGBD input: 16b grayscale depth is packed into 3-chn 8b depth, concatenated with the RGB image
• Input is passed through modified KL-encoder and mapped to the latent space
• Noise is added to the latent representation, which is then iteratively denoised by the U-Net
• Text prompt is passed through a frozen CLIP-text encoder and mapped to U-Net layers via cross-attention
• Denoised latent representation is passed through modified KL-decoder and mapped back to pixel space

as a 6-channel RGBD output. This is then separated into an RGB image and a 16b grayscale depth map
• LDM3D was trained on Intel AI Supercomputing Cluster with Intel Xeon and Habana Gaudi AI accelerators

►Our Latent Diffusion Model for 3D (LDM3D) generates RGB image and depth map pairs for given text 
prompts, allowing users to generate RGBD outputs from text inputs.

►We demonstrate integration of LDM3D into an application called DepthFusion, which uses diffused 
images and depth maps to create immersive and interactive 360°-view experiences with TouchDesigner.


